Banach Function Spaces and Datko-type Conditions for Nonuniform Exponential Stability of Evolution Families

نویسندگان

  • NICOLAE LUPA
  • LIVIU HORIA POPESCU
چکیده

For nonuniform exponentially bounded evolution families defined on Banach spaces, we introduce a class of Banach function spaces, whose norms are uniquely determined by the nonuniform behavior of the corresponding evolution family. We generalize the classical theorem of Datko on these spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weak Exponential Expansiveness of Evolution Families in Banach Spaces

The aim of this paper is to give several characterizations for the property of weak exponential expansiveness for evolution families in Banach spaces. Variants for weak exponential expansiveness of some well-known results in stability theory (Datko (1973), Rolewicz (1986), Ichikawa (1984), and Megan et al. (2003)) are obtained.

متن کامل

On Barreira-Valls Polynomial Stability of Evolution Operators in Banach Spaces

Our main objective is to consider a concept of nonuniform behavior and obtain appropriate versions of the well-known stability due to R. Datko and L. Barbashin. This concept has been considered in the works of L. Barreira and C. Valls. Our approach is based on the extension of techniques for exponential stability to the case of polynomial stability. 2000 Mathematics Subject Classification: 34D0...

متن کامل

Exponential Stability and Exponential Instability for Linear Skew-product Flows

We give characterizations for uniform exponential stability and uniform exponential instability of linear skew-product flows in terms of Banach sequence spaces and Banach function spaces, respectively. We present a unified approach for uniform exponential stability and uniform exponential instability of linear skew-product flows, extending some stability theorems due to Neerven, Datko, Zabczyk ...

متن کامل

On Nonuniform Exponential Stability for Skew-evolution Semiflows on Banach Spaces

The paper considers some concepts of nonuniform asymptotic stability for skew-evolution semiflows on Banach spaces. The obtained results clarify differences between the uniform and nonuniform cases. Some examples are included to illustrate the results.

متن کامل

Instabilité Des Cocycles D’évolution Fortement Mesurables Dans Des Espaces De Banach

The aim of the paper is to present various asymptotic behaviors of skewevolution semiflows in Banach spaces, as exponential decay, instability, exponential instability and integral instability. Relations between these asymptotic properties are also given. As main results, two Datko type theorems are proved. A unified nonuniform approach is provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016